
Software Certification – Coding, Code, and Coders

Klaus Havelund and Gerard J. Holzmann
Laboratory for Reliable Software (LaRS)

Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Drive, Pasadena, California, 91109-8099

firstname.lastname@jpl.nasa.gov

ABSTRACT
We describe a certification approach for software development
that has been adopted at our organization. JPL develops robotic
spacecraft for the exploration of the solar system. The flight
software that controls these spacecraft is considered to be mission
critical. We argue that the goal of a software certification process
cannot be the development of “perfect” software, i.e., software
that can be formally proven to be correct under all imaginable and
unimaginable circumstances. More realistically, the goal is to
guarantee a software development process that is conducted by
knowledgeable engineers, who follow generally accepted
procedures to control known risks, while meeting agreed upon
standards of workmanship. We target three specific issues that
must be addressed in such a certification procedure: the coding
process, the code that is developed, and the skills of the coders.
The coding process is driven by standards. The code is
mechanically checked against the standards with the help of state-
of-the-art static source code analyzers. The coders, finally, are
certified in on-site training courses that include formal exams.

Categories and Subject Descriptors
D.2.0 [Software Engineering]: General – standards. K.5.2.
[Governmental Issues]: – Regulation. K.7.3: [The Computing
Profession]: Certification, Licensing and Testing.

General Terms
Design, Reliability, Standardization, Verification, Legal Aspects.

Keywords
Coding standards, code review, static source code analysis, logic
model checking, unit testing, safety- and mission-critical software.

1. INTRODUCTION
John Rushby once described the dilemma of current approaches to
software verification or certification as follows: “Because we
cannot demonstrate how well we've done, we'll show how hard
we've tried.” [1]. The statement is apt. Few, if any, organizations
feel confident enough about their software development processes
that they are willing to give an absolute guarantee of its fitness for
use or so much as the absence of preventable flaws in
workmanship.

 As customers, and generally as users that have to rely on the
safety and reliability of sometimes critically important software
applications (e.g., as used by banks, car makers, or in medical

devices), we are quite used to the opposite: we are routinely asked
to sign disclaimers that hold the software makers invulnerable to
flaws in workmanship and all possible damage that might be
caused by it. This in itself is remarkable.

At some point, perhaps a few decades ago, we may have expected
that standard market principles would solve this problem:
customers could have been expected to reject products that are
delivered without warranties of fitness. But this is not what
happened.

The driving principles that determine how software applications
are developed and marketed give a significant advantage to the
vendor who delivers a new service first, and merely commits to
slowly improve while the product is in use, based on customer
feedback. The customers, in this way, become part of what
otherwise would be the testers, except this group of testers pays
the vendor, instead of the reverse. As unsettling as this might be
from a philosophical point of view, it works quite well for the vast
majority of software products sold today.

A clear exception holds for the category of safety-critical and
mission-critical software applications (the distinction is whether a
system failure may result in death/serious injury to people versus
loss of mission). Most will agree that different rules must apply
here, since for these types of applications it cannot be considered
acceptable for a vendor to decline all responsibility for the
potential damage caused in return for a mere commitment to fix
any problems not caught in the software development process
until after they have manifested themselves to end-users. If we
now look more carefully at which different rules are applied in
these cases, we are in for a surprise. In many cases there are no
software certification requirements, and those requirements that
do exist can only be described as modest. Organizations are often
only asked to show “how hard they’ve tried” and not that certain
standards of workmanship are met.

As part of our research and work, we have inevitably gained
experience with the analysis of many software products that are
considered critical. At JPL this naturally includes the analysis of
the control software for interplanetary spacecraft, but we have
also been involved in a broad range of other types of safety-
critical applications, including the investigation of specific aspects
of automotive software (e.g., in the context of a study of the
potential for sudden unintended acceleration of Toyota vehicles in
2010), medical device software, software used in the shutdown
systems of nuclear power plants, railway signaling protocol
software, etc.

NASA’s shuttle software [2] is often mentioned as an example of
how critical software systems can reach a high level of safety and
reliability. This software indeed has an exemplary track record of
having a low residual fault density rate over the approximately
three decades of use. Like any other human design, it is, of course,

Copyright 2011 Association for Computing Machinery. ACM
acknowledges that this contribution was authored or co-authored by an
employee, contractor or affiliate of the U.S. Government. As such, the
Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government
purposes only.
EMSOFT’11, October 9–14, 2011, Taipei, Taiwan.
Copyright 2011 ACM 978-1-4503-0714-7/11/10...$10.00.

not completely free from defects, nor can it be expected to be.
One could well say that the first principle adopted in the design of
any system that is meant to be reliable is the recognition that no
single system component can be perfect: every part has breaking
points, some known and some unknown. Reliability and safety,
therefore should be treated as system properties, not component
properties. To complete the argument, in almost all cases of
interest the software is merely one component in a larger system
that includes also hardware and human operators as essential
elements.

The software used for commercial airplanes, similarly, has an
enviable track record for reliability. Again, the track record is not
for perfection, because in any sufficiently complex system there
are always residual defects that are discovered only after a system
is delivered and goes into operation. The goal for certified
software, therefore, cannot be to put a process in place that
guarantees correctness under all circumstances – the goal is to
produce a safe and reliable system that is build by competent,
well-trained developers, following a process that controls risks
and meets the evolving standard of skilled workmanship. In one
sentence here, then we touch on three separate targets for a
software certification process: the coding process that is followed,
the code, and the coders. The certification process that is followed
in the aerospace industry (e.g., for software used to control
commercial airplanes), targets primarily the coding process, e.g.
with standards such as DO-178B [3]. There are no strict
requirements here for the use of specific verification tools, or for
the certification of software developers themselves. The target is
only to secure that due diligence was used in the development
process itself.

2. CERTIFICATION PROCESS
At JPL, in the development of the control software for
interplanetary spacecraft, such as the Mars Exploration Rovers
[4], we have adopted a different process. The intent of this process
is to subject not just the coding process, but also the code, and the
coders, and to some extent the software managers as well, to some
form of certification.

2.1 The Coding Process
For flight code, JPL has adopted an Institutional Coding Standard
[5], with which it requires compliance in all newly developed
mission-critical software written at JPL. Most flight software, by a
significant margin is traditionally written in the C programming
language, and therefore the JPL coding standard for flight
software targets this language. The coding standard deliberately
captures only risk-related rules for which compliance can be
verified mechanically. Other than most other coding standards,
then, this standard has real teeth: except in rare cases, non-
compliance is not an option for our flight software developers.
Because all rules in the standard are specifically risk related (i.e.,
we can often point at a mission anomaly or mission loss that was
caused by the violation of the underlying principle), approval for
non-compliance is also rarely requested or granted. An example of
a risk-related rule in this coding standard is the abolition of all
dynamic memory use and of recursive code. Some of the
motivation for the rules can be traced to the Power of Ten rules,
described in [6]. JPL further imposes fairly strict requirements on
the code review process some of which is detailed in [7]. The
coding standard for C is included in brief format in Appendix A,
organized according to importance of the rules.

JPL has also developed a coding standard for Java [8]. Java is at
JPL mostly used for ground software. That is, software that
executes on ground-based computers in mission operation centers,
for example receiving telemetry from and sending commands to
the rovers. Although this is not embedded software, its correct
behavior is important for the correct behavior of the rovers. The
Java coding standard is in a draft form and is not yet an
institutional standard. It is more liberal in certain areas than the C
coding standard. For example, it does allow dynamic memory
allocation (use of the new construct). The coding standard for
Java is included in brief format in Appendix B, organized
according to subject categories. The rules represent headlines,
which in the full standard are explained in more detail.

2.2 The Code
The code is rightfully subject to the strictest requirements. Flight
code, e.g. for the MSL mission [4], is checked nightly for
compliance with the JPL C coding standard [5], and subjected to
rigorous analysis with four separate state-of-the-art static source
code analysis tools [7] (at the time of writing this includes the
commercial tools [9]: coverity, codesonar, and odasa (from
semmle), and the research tool uno). The warnings generated by
each of these tools is combined with the output of mission-
specific checkers that secure compliance with naming
conventions, coding style, etc. In addition, all warnings, if any
(there should be none), from the standard C compiler, used in
pedantic mode with all warnings enabled, are included in the
results that are provided to the software developers as part of the
standard ‘scrub’ interface [7]. The developers are required to close
out all reports before a formal code review is initiated. In peer
code reviews, an additional source of input is provided by
designated peer code reviewers, and added to the ‘scrub’ results.

Furthermore, each programmer is responsible for writing unit tests
for his/her modules. A compilation build of the entire system
includes running all unit tests, which have to succeed for the build
to succeed. Separately, key parts of the software design are also
checked for correctness and compliance with higher level design
requirements with the help of logic model checkers, such as Spin
[10]. Training in the use of logic model checkers is tacitly
provided via (optional) graduate-level courses taught by members
of the JPL Laboratory for Reliable Software in the Computer
Science Department at the California Institute of Technology.
Approximately ten JPL employees outside the Laboratory for
Reliable Software have so far taken and passed this course, and
have become proficient in the use of logic model checkers for the
analysis and verification of flight software.

The Java coding standard in its entirety has in collaboration with
semmle been implemented in semmle’s static code analyzer, and
is currently being tested on JPL internal projects, including the
MSL telemetry and command ground software. The
implementation is being refined (in collaboration with semmle),
driven by the results obtained during these tests. The refinement
consists of finding the right balance between a low number of
false positives and a high number of true negatives. Too many
false positives will discourage use of the standard.

2.3 The Coders
Starting in 2010, JPL adopted a new procedure for the
certification of flight software developers. The procedure itself is
still subject to some revision, but once fully operational no
software developer will be able to touch flight code (develop,
manage, or modify) without having successfully completed a JPL
specific Flight Software Certification course. The course consists

of three modules, focusing on (a) computing science principles,
(b) JPL software development standard processes, and (c)
software risk and software vulnerabilities. Each module takes two
full days of instruction, for a total of six days for all three modules
combined. Each module ends with an exam that must be
completed with a passing grade. At the time of writing, the first
twenty software developers have successfully completed this
course, and have received their certificates. Others have not
passed and will have to take the course, and the exams, again.
New classes are held several times a year, until all software
developers have been certified. At that point, we will likely add
refresher courses for those who are already certified, in addition to
the basic certification course itself, to keep pace with continuing
developments in this field. The certification course intends to
certify that all developers of critical code are familiar with basic
computing science theory, and standard algorithms, are intimately
familiar with the risks inherent in the use of the programming
languages that are typically used for flight code, and understand
not just the letter but also the rationale for the coding standard that
they are expected to follow. The certification course also
introduces developers to the tools (e.g., static analyzers, code
review tools, and unit test tools) that they will be using in flight
software development.

Perhaps as an aside, JPL has also instituted an (as yet non-
required) course for senior management. Senior management
normally has deep experience with spacecraft and mission design,
but less so with software design principles. To date, most of JPL’s
senior management has taken and completed this course. The
course is repeated once a year, and is by invitation only.

3. REGULATORY PROCESS
As noted in the introduction, members of our team have been
involved in a broad range of software analysis applications,
targeting not only aerospace but also safety-critical software used
in automobiles, medical devices, and in the shutdown systems of
nuclear power plants. It is perhaps noteworthy that at present there
do not appear to be any strict regulatory requirements on the
development of these critical types of software applications,
neither on the code or the coders, on the organization that employs
the coders, or on the processes that are followed in the coding
process.

In the automotive industry there is reasonable consensus on at
least one set of coding guidelines: the one developed by the
organization MiraLtd, and known as the MISRA-C Coding
Guidelines [11]. Curiously, although many developing
organizations have publically expressed support for these
guidelines, there is no requirement (or verification) that they
actually comply with them.

Compliance with any reasonable standard, e.g., [5,6,11,8], can
make it significantly simpler to analyze code for potential
anomalies, and to revise, and maintain it longer term. Much the
same is true in the medical device industry, where the FDA does
not require compliance with any specific coding standard or
software development process, and goes no further than to

recommend the use of state-of-the-art static source code analyzers
as part of software development process, without actually
requiring evidence that this is done. Similarly, the Nuclear
Regulatory Commission has issued no comparable requirements
for any software used in the shutdown systems of future nuclear
power plants, nor does it seem to have plans to do so, as a key part
of the licensing process.

We believe that in each of these cases the lack of requirements on
software development is an omission that should be corrected.
Where not following generally accepted principles for safe
software development could be regarded as a lack of
workmanship on the part of the developer or developing
organization, with the potential effect of contributing to
preventable software failure, inadequate regulation for safety-
critical software systems that we all rely on could well be
regarded as a failure of the regulatory process.

4. ACKNOWLEDGMENT
The research described in this paper was carried out at the Jet
Propulsion Laboratory, California Institute of Technology, under
a contract with the National Aeronautics and Space
Administration.

5. REFERENCES
[1] J. Rushby. Verified Software Systems – the Certification

Perspective, http://www.csl.sri.com/users/rushby/slides/vsr-
roadmap-cert-apr06.pdf.

[2] C. Fishman. They Write the Right Stuff,
http://www.fastcompany.com/magazine/06/writestuff.html.

[3] RTCA-DO-178B, Software Considerations in Airborne
Systems and Equipment Certification, December 1992.

[4] Mars Science Laboratory mission (MSL),
http://www.nasa.gov/mission_pages/msl/index.html.

[5] JPL Institutional Coding Standard for the C Programming
Language,
http://lars-lab.jpl.nasa.gov/JPL_Coding_Standard_C.pdf.

[6] The “Power of Ten” Coding Rules, http://spinroot.com/p10/.

[7] G.J. Holzmann. Scrub: a Tool for Code Reviews, Innovations
in Systems and Software Engineering, Vol. 6, No. 4, 2010,
pp. 311-318.

[8] JPL Draft Coding Standard for the Java Programming
Language,
http://lars-lab.jpl.nasa.gov/JPL_Coding_Standard_Java.pdf.

[9] Static Source Code Analysis Tools,
http://spinroot.com/static/.

[10] G.J. Holzmann. The Spin Model Checker – Primer and
Reference Manual, Addison-Wesley, 2004.

[11] MISRA-C:2004, Guidelines for the Use of the C Language in
Critical Systems, Mira Ltd.

APPENDICES

A – JPL Coding Standard for C
1 Language Compliance

1 Do not stray outside the language definition.

2 Compile with all warnings enabled; use static source code analyzers.

2 Predictable Execution
3 Use verifiable loop bounds for all loops meant to be terminating.

4 Do not use direct or indirect recursion.

5 Do not use dynamic memory allocation after task initialization.

*6 Use IPC messages for task communication.

7 Do not use task delays for task synchronization.

*8 Explicitly transfer write-permission (ownership) for shared data objects.

9 Place restrictions on the use of semaphores and locks.

10 Use memory protection, safety margins, barrier patterns.

11 Do not use goto, setjmp or longjmp.

12 Do not use selective value assignments to elements of an enum list.

3 Defensive Coding
13 Declare data objects at smallest possible level of scope.

14 Check the return value of non-void functions, or explicitly cast to (void).

15 Check the validity of values passed to functions.

 16 Use static and dynamic assertions as sanity checks.

*17 Use U32, I16, etc instead of predefined C data types such as int, short, etc.

18 Make the order of evaluation in compound expressions explicit.

19 Do not use expressions with side effects.

4 Code Clarity
20 Make only very limited use of the C pre-processor.

21 Do not define macros within a function or a block.

22 Do not undefine or redefine macros.

23 Place #else, #elif, and #endif in the same file as the matching #if or #ifdef.

*24 Place no more than one statement or declaration per line of text.

*25 Use short functions with a limited number of parameters.

*26 Use no more than two levels of indirection per declaration.

*27 Use no more than two levels of dereferencing per object reference.

*28 Do not hide dereference operations inside macros or typedefs.

*29 Do not use non-constant function pointers.

30 Do not cast function pointers into other types.

31 Do not place code or declarations before an #include directive.

5 – MISRA shall compliance
73 rules All MISRA shall rules not already covered at Levels 1-4.

6 – MISRA should compliance
*16 rules All MISRA should rules not already covered at Levels 1-4.

All rules are ‘shall’ rules (must be followed), except those marked with `*’ which are ‘should’ rules (justified deviations allowed).

B – JPL Coding Standard for Java
1 – Process

1 Compile with checks turned on.
2 Apply static analysis.
3 Document public elements.
4 Write unit tests.

2 – Names
5 Use the standard naming conventions.
6 Do not override field or class names.

3 - Packages, Classes and Interfaces
7 Make imports explicit.
8 Do not have cyclic package dependencies.
9 Obey the contract for equals().

10 Define both equals() and hashCode().
11 Define equals when adding fields.
12 Define equals with parameter type Object.
13 Do not use finalizers.
14 Do not implement the Cloneable interface.
15 Do not call nonfinal methods in constructors.
16 Select composition over inheritance.

4 – Fields
17 Make fields private.
18 Do not use static mutable fields.
19 Declare immutable fields final.
20 Initialize fields before use.

5 – Methods
21 Use assertions.
22 Use annotations.
23 Restrict method overloading.
24 Do not assign to parameters.
25 Do not return null arrays or collections.
26 Do not call System.exit.

6 - Declarations and Statements
27 Have one concept per line.
28 Use braces in control structures.
29 Do not have empty blocks.
30 Use breaks in switch statements.
31 End switch statements with default.
32 Terminate if-else-if with else.

7 - Expressions
33 Restrict side effects in expressions.
34 Use named constants for non-trivial literals.
35 Make operator precedence explicit.
36 Do not use reference equality.
37 Use only short-circuit logic operators.
38 Do not use octal values.
39 Do not use floating point equality.
40 Use one result type in conditional expressions.
41 Do not use string concatenation operator in loops.

8 - Exceptions
42 Do not drop exceptions.
43 Do not abruptly exit a finally block.

9 - Types
44 Use generics.
45 Use interfaces as types when available.
46 Use primitive types.
47 Do not remove literals from collections.
48 Restrict numeric conversions.

10 - Concurrency
49 Program against data races.
50 Program against deadlocks.
51 Do not rely on the scheduler for synchronization.
52 Wait and notify safely.

11 - Complexity
53 Reduce code complexity.

